Utilization of ¹³C-¹³C Coupling in Structural and Biosynthetic Studies. III. Ochrephilone -A New Fungal Metabolite¹

Haruo Seto*

Institute of Applied Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

and Masato Tanabe

Stanford Research Institute, Menlo Park, California, 94025 U.S.A.

(Received in Japan 13 December 1973; received in UK for publication 17 January 1974)

During biosynthetic studies with ¹³C on metabolites² of *Penicillium multicolor* NRRL 2060, we isolated a new metabolite in addition to sclerotiorin³ and rotiorin⁴. The spectral data suggested a similarity of the metabolite to the azaphilones, but unlike other azaphilones it failed to react characteristically with ammonia. The metabolite I, $C_{23}H_{26}O_5$ (M⁺:m/e 382) mp. 135-140°(dec.), $[\alpha]_D^{25}$ +410° (c 0.44, ethanol), λ_{max}^{EtOH} 251 nm(c=17500), 315(11900), 335(18300), 352(22900), 375(26200), 393(30500), 415(22000) and 442(9600), is a yellow pigment, which we named ochrephilone, and it gave a mono 2,4-dinitrophenylhydrazone derivative, $C_{29}H_{30}O_8N_4$ (M⁺: m/e 562) mp. 232-233°C(dec.).

The presence of a γ -lactone, saturated ketone and conjugated ketone was indicated by the IR (ν_{max}^{nujol} 1773, 1730 and 1630-1620 cm⁻¹, respectively). The proton nmr spectrum of I indicated the presence of the side chain structure that is common to sclerotiorin and rotiorin.

δ(in CDCl₃) 0.86(H₁₆, 3H, t, J=6.5Hz), 1.05(H₂₃, 3H, d, J=
6.4Hz), ∿1.35(H₁₅, 2H, m), 1.81(H₂₂, 3H, d, J=1.1Hz),
∿2.45(H₁₄, 1H, m), 5.65(H₁₃, 1H, broad d, J=9.5Hz), 5.95
(H₁₀, 1H, d, J=15.5Hz) and 6.96(H₁₁, 1H, d, J=15.5Hz).

Signals in the pmr spectrum other than those from the side chain at $[1.58(H_{21}, 3H, s), 2.44(H_{20} 3H, s), 5.40(H_5, 1H, d, J=0.7Hz), 6.15(H_8, 1H, s) and 7.40(H_1, 1H, broad s)] are also similar to those of rotiorin except for a characteristic singlet of two protons at <math>\delta$ 3.82. This two proton singlet sppeared as an AB-quartet (δ 3.85, 1H, J=12.0Hz and 4.18, 1H, J=12.0Hz) in d₆-

acetone solution. These two protons with coincident chemical shifts, were established to be located on two adjacent methines from the cmr spectral data of I, the two doublets at δ_c 42.9 and 57.4 in the off-resonance decoupled spectrum (in CDCl₃) collapsed to two singlets on selective irradiation of the protons at δ 3.82.

Based on the structural similarity between I and rotiorin, whose polyketide origin has been established⁵, it appeared that I was also derived from a polyketide and several tentative structures in accord with the spectral data could be considered.

We turned to the use of the double labeling method^{6,7} with ¹³CH₃¹³COONa (90% enriched) to obtain definitive structural information on I as well as biosynthetic information by ¹³C-¹³C coupling in the labeled metabolite. From this study, the following partial structure was established from the cmr spectrum of I (Fig. 1a). C₃ and C₁₈ are the two methines described above.

δc from TMS (in CDCl₃) $C_1(147.0)$, $C_2(114.0)$, $C_3(42.9)$, C_4 (82.9), $C_5(191.0)$, $C_6(106.1)$, $C_{17}(168.7)$, $C_{18}(57.4)$, C_{19} (200.1), and $C_{20}(30.2)$. The ¹³C-¹³C coupling constants⁸ observed are as follows: $J_{1,2}=78Hz$, $J_{3,4}=34Hz$, $J_{5,6}=61Hz$, $J_{17,19}=48Hz$, and $J_{19,20}=44Hz$. An oxygen substituent at C_1 is indicated by the large ¹³C-¹³C coupling constant between C_1 and C_2 , and by the chemical shift of $H_1(\delta$ 7.40).

The relationship between C₄ and C₅, and C₁₀ and C₁₉ was established by observing the following 1,3-couplings⁹ with I labeled with ¹³CH₃COONa (Fig. 1b): $J_{4,6}=14Hz$, z and $J_{10,20}=12Hz$. Proton decoupling experiments proved the relationship between H₁ and H₃ ($J_{H_1,H_3} < 0.5Hz$), and H₁ and H₆ ($J_{H_1,H_2}=1.0Hz$). Thus, C₄ and C₁₇ should be linked through oxygen to form a γ -lactone.

The structure of the side chain is also supported by $^{13}C_{-}^{13}C$ coupling observed with double labeled I: C₉(157.1), C₁₀(116.2), C₁₁(141.5), C₁₂(131.9), C₁₃(147.3), C₁₄(35.0), C₁₅(30.1), C₁₆ (11.9), C₂₂(20.2), and C₂₃(12.3). J_{9,10}=69Hz, J_{11,12}=56Hz, J_{19,14}=44Hz, and J_{15,16}=36Hz. The magnitude of the coupling constant between C₁₁ and C₁₂ agrees very well with that reported for 1,3-butadiene¹⁰ The chemical shift of C₉ together with the large coupling constant between C₉ and C₁₀ as compared with C₁₁ and C₁₂ clearly indicates the attachment of an electronegative substituent⁸ at C₉. The remaining carbons [=C₇-C₈H=, C₇(144.7) and C₈(107.6), J_{7,8}=54Hz)] should be incorporated into the total structure of I as shown on the next page. The carbon linked to C₄ is therefore assigned to the C₂₁ methyl (δc 23.2).

No: 8

The structure is further confirmed by the ¹³C-¹³C coupling constants observed with I obtained from a labeling experiment with a 1:1 mixture⁶ of ¹³CH₃COONa and CH₃¹³COONa (both 90% enriched): J_{2,3}=42Hz, J_{4,5}=42Hz, J_{6,7}=72Hz**, J_{8,9}=72Hz**, J_{18,11}=70Hz, J_{12,13}=70Hz, J_{14,15}= 35Hz, and J_{18,19}=40Hz.

In the cmr spectrum of I labeled with 13 CH₃COONa, signals of C₂, C₄, C₆, C₈, C₁₈, C₁₂, C₁₄, C₁₆, C₁₈, and C₂₀ appeared with increased intensity (approximately 2.5 times) as compared with the unlabeled compound. Thus, I is biosynthesized from 10 molecules of acetic acid without C-C bond cleavage as shown above with the introduction of three C₁-units, presumably from formate or methionine as in the case of sclerotiorin¹¹ and rotiorin⁵.

I is structurally related to rubrorotiorin¹² and appears to be derived by reduction of the corresponding dechloro compound. Another metabolite which we consider to be dechlororotiorin from the proton nmr spectral data, was detected in the mycelium of the fungus. <u>Acknowledgment</u> This work was supported by U.S.P.H.S. Grant AI-08143. We thank Mr. L. W. Cary for the cmr and Dr. D. Thomas for the mass spectral data.

****** Due to the overlapping of the signals, these values were obtained by the distance between the central peak and the satellite peak.

- 1) Part II see ref. (7).
- M. Tanabe, H. Seto and L. F. Johnson, <u>The Chemistry of Natural Products Symposium Papers</u> <u>14</u>, 23 (1970). Fukuoka, Japan.
- 3) F. M. Dean, J. Staunton and W. B. Whalley, J. Chem. Soc. 1959, 3004.
- 4) J. S. E. Holker, J. Staunton and W. B. Whalley, ibid. 1963, 3641.
- 5) A. J. Birch, A. Cassera, P. Fitton, J. S. E. Holker, H. Smith, G. A. Thompson and W. B. Whalley, <u>ibid.</u> <u>1962</u>, 3583.
- 6) H. Seto, T. Sato and H. Yonehara, J. Amer. Chem. Soc. 95, in press.

- 7) H. Seto, L. W. Cary and M. Tanabe, J.C.S. Chem. Comm. 1973, 867.
- Concerning ¹³C-¹³C coupling, see J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, New York, N. Y. 1972, p370.
- 9) F. J. Weigert and J. D. Roberts, <u>J. Amer. Chem. Soc. 94</u>, 6021 (1972).
- 10) G. Becker, W. Luttke and G. Schrumpf, Angew. Chem. internat. Edit. 12, 339 (1973).
- 11) A. J. Birch, P. Fitton, E. Pride, A. J. Ryan, H. Smith and W. B. Whalley, <u>J. Chem. Soc.</u> <u>1958</u>, 4576.
- 12) R. W. Gray and W. B. Whalley, ibid. C 1971, 3579.

Fig. 1. Proton noise-decoupled cmr spectra of ochrephilone from (a) $^{13}\rm CH_3{}^{13}\rm COONa$ and (b) $^{13}\rm CH_3\rm COONa$.